
ConsenSys Confidential

Enhanced Immutability of Permissioned
Blockchain Networks by Tethering

Provenance with a Public Blockchain
Network

Azeem Ahmed (azeem.ahmed@consensys.net)

Jim Zhang (jim.zhang@consensys.net)

Abstract

Permissioned private chains are susceptible to attacks where legitimate parties on the permissioned
network collude to create an alternate chain by rewriting the chain from some point-in-time in the past;
thereby, weakening the immutability guarantees of a blockchain network. This paper discusses such an
attack vector and proposes a way to tether the provenance for permissioned and private chain state
transitions to a public blockchain network (which has better guarantees around immutability). This is
accomplished by tethering a private chain to a smart contract on the Ethereum main-net that records an
irrefutable commitment of the current chain state. An external service is thus, enabled to provide
guarantees on the private chain state (with an appropriate proof) and allow the detection of a
compromised private chain due to collusion-based history rewrite by legitimate permissioned parties.

1 Table of Contents

1 BACKGROUND ... 1

1.1 CONSENSUS ALGORITHMS .. 1
1.2 ATTACK VECTORS ... 1

1.2.1 Compromised Access Layer .. 1
1.2.2 Collusion between Permissioned Parties... 2

2 STATE PROVENANCE THROUGH MAIN-NET TETHERING .. 3

2.1 INTRODUCTION .. 3
2.2 DEFINITIONS ... 3
2.3 ARCHITECTURAL OVERVIEW .. 3
2.4 DETAILS OF TETHERING A NETWORK ... 3

2.4.1 Deploy Arbitrator on Main-net ... 3
2.4.2 Register Permissioned Network ... 3
2.4.3 Synchronize state with the main-net periodically.. 4
2.4.4 Checking state agreement between nodes ... 5
2.4.5 Policy enforcement when state disagreement is detected ... 6
2.4.6 Addition or Removal of Nodes from the Network ... 7

3 CONCLUSION ... 7

ConsenSys Confidential 1

1 Background
Enterprise organizations are looking to exploit
blockchain based distributed data storage and
compute frameworks to realize the benefits of
cooperation with potentially adversarial parties for
efficient execution of inter-party transactions relying
on the guarantees provided by a distributed ledger. For
several reasons (including but not limited to
transactional privacy, trade secrets, and performance),
most enterprises seek to utilize their own private
permissioned network (aka consortium chains) for a
distributed ledger. These networks do not employ
proof-of-work for consensus and generally should not
employ PoW because a PoW network is only as secure
as the computing capacity behind it. Instead, variants
of BFT algorithms or crash-tolerant algorithms are
employed for consensus (depending on the use-case of
a particular deployment). These consensus algorithms
lead to significant benefits for permissioned chains as
transactions can settle with significantly lower latency.
As reasoned above, proof-of-work would not provide
the requisite security for these networks.

Although, a permissioned network that has an access
control layer backed in as a first-class citizen is not
susceptible to the same attack vector as an un-
permissioned network, it is susceptible to a different
subset of attack vectors: adversaries getting access to
such a network by compromising the access control
layer or collusion of sufficiently large number of
legitimate permissioned parties within the network. In
the later scenario, the immutability of the chain can no
longer guaranteed even with immediate finality of the
blocks. The type of collusion scenario is often times
handled by legal entities that reside off-the-chain but
there is still not an easy way to arbitrate and prove the
state of the chain at a given point-in-time in all parties
on the chain collude. The concepts introduced in this
paper allow any interested party to reliably detect,
verify, and potentially recover from collusion between
trusted parties on a permissioned network.

1.1 Consensus Algorithms

Permissioned networks tend to employ a variety of
consensus algorithms that can be broadly classified as

either byzantine fault tolerant or crash fault tolerant.
All such algorithms provide instant finality of the
blocks. While a comprehensive discussion around
these algorithms is beyond the scope of this paper, it is
worth it to note that the attack vectors described in
here do not cover the full gamut of these algorithms
and only discuss a subset of these algorithms (RAFT,
IBFT, and PoA implementations like Clique, and Aura).
Nonetheless, the concepts discussed can be employed
for any class of algorithms that fit into these categories
and have similar susceptibilities.

1.2 Attack Vectors
Before we discuss the proposed Tethering concept, it
is prudent to briefly discuss the attack vectors on a
permissioned network. These can generally be
categorized into two areas: gaining access to the
network by circumventing or breaking through the
access controls, or sufficient number of legitimate
permissioned parties colluding to create an alternate
version of truth on the network. While we briefly
discuss the first category of attacks, this paper is
primarily focused on the second category namely the
issue of history rewrite by sufficiently large number of
colluding parties in a permissioned network.

1.2.1 Compromised Access Layer
The attack vector of a compromised node is generally
addressed by ensuring proper access control and
following best practices in security. It is, however,
worth it to briefly discuss this attack vector and its
implications. In general, we need to discuss the ability
of an attacker to rewrite history and propose new
rogue/invalid blocks to the network.

1.2.1.1 Using RAFT
In a permissioned network using the RAFT consensus,
this attack can be successful if a rogue party gains
access to the network and is elected leader for the
RAFT consensus. In such a scenario, rogue new blocks
can be proposed that the network will consider the
truth. RAFT consensus is susceptible to this attack
vector because RAFT followers are required to blindly
trust the leader’s proposal. There is little that can be
done to prevent such an attack after a rogue party
gains access to a node on the network. Additionally,
any rogue node could rewrite its own chain without

proposing it to the rest of the network (leaving the
party that relies on the particular node susceptible to
invalid history). The first scenario of a rogue leader
proposing compromised blocks to the network can’t be
protected against given that RAFT is simply a crash
tolerant algorithm. However, the second scenario of a
local rewrite of history could be detected and
recovered from using the proposal in this paper.

1.2.1.2 Using BFT variants
In a permissioned network using the PBFT consensus,
or one of its many variants such as IBFT, this attack is
limited to a local rewrite of history. The PBFT
consensus algorithm is designed to tolerate invalid
block proposals by the rogue party because the honest
validators will reject the block. However, new rogue
blocks can be proposed and accepted if a rogue party
controls the super-majority of the validators and the
proposer of the blocks (which would mean that the
network is severely compromised). This proposal does
not address this scenario.

1.2.2 Collusion between Permissioned Parties
Our main focus is the detection of a history rewrite by
a sufficient number of colluding parties on the network
and to reliably reinforce immutability of permissioned
chains. To that extent, let us briefly look at what
collusion may look like on a permissioned network.
Again, we will look at proposing of new blocks on the
network and rewrite of the history.

1.2.2.1 Using RAFT
In a permissioned network that utilizes RAFT
consensus, any party can collude with the leader of the
network and introduce new blocks in the network that
are invalid. The blocks are simply accepted by all
parties when proposed. Such collusion can’t be
prevented, and RAFT consensus is not recommended
for permissioned networks that are concerned about
adversarial parties on the network. This attack is
equivalent in its effect to a rogue party gaining control
of the leader node by breaking through the access
control layer.

Multiple parties may also collude and rebuild the chain
(rewrite history). As the block finality is instant, the
rewrite of the history will be limited to the parties

involved and will not propagate on the network. When
new blocks are proposed with the new chain, they will
be rejected by the other nodes in the network because
the chain is not valid. At this point, there is no way to
tell who was ‘honest’ as the colluding parties can easily
suggest that the ‘honest’ party is in fact ‘rogue’. This
proposal in this paper sufficiently addresses this later
scenario.

1.2.2.2 Using BFT variants
In a permissioned network that utilizes a BFT variant
consensus, multiple parties may collude and rewrite
their own history and start proposing and validating
new blocks based on the new rewritten chain. This
requires collusion between a super majority of
validators (and in a network where every node is a
validator, this requires the super majority participation
of the network). However, as is true with RAFT, since
the block finality is instant, the rewritten chain will not
propagate on the network and will continue to be
rejected by the honest nodes. A history rewrite is not
simple in this case as in the RAFT consensus which does
not have the signature of proposer on the block (as it
exists today) and identifying the honest party is
problematic. The BFT variants generally have some
sort of a signatory mechanism that is stored on the
block, so collusion between parties would be
sufficiently difficult and unless all parties in the
consortium collude on the new chain, the honest
parties can easily be identified since every block has
the signature of the original validator(s). In theory, this
minimizes the surface area of this attack vector but
there is still no recourse if the whole consortium
colludes to rewrite some part of the history. The
proposal in this paper enables an external party to
validate that no history rewrite has occurred on the
network. External parties include, at minimum,
distributed applications that interact with the
consortium network, auditors who need to verify the
veracity of the network, or proxy nodes that interact
with the network using a node provided by a
permissioned party on the network.

2 State Provenance through Main-
net Tethering

2.1 Introduction
This paper proposes a method to maintain an
irrefutable proof of the state of a permissioned
network using a combination of a monitor node and a
smart contract on the Ethereum main-net. The state of
a permissioned network is defined as the full-chain of
finalized blocks on the permissioned network at any
given point in time. The main-net is significantly more
hardened against tampering and can be leveraged as
the source of truth when there is disagreement
between parties in a permissioned network. Using this
record on the main-net, any interested service or party
can provide proof of network compromise based on
state deviations.

2.2 Definitions
This paper employs several terms that are defined
here for ease of consumption.

- Environment: An environment is a permissioned
network which has one or more nodes.

- Network: Equivalent to an environment and is used
synonymously in this paper.

- Node: A node within a permissioned network is
owned by a specific party in the permissioned
network and has a unique identity. Each node also
has a public/private key pair that is maintained
securely to sign all messages that originate from the
node.

- Monitor Node: A read-only node within a
permissioned network run by the auditor (or a
platform provider) in a security hardened container
with no external access and audited maintenance
access.

- Main-net Tether Service: This service is collocated
with a chain client in the node and is continuously
monitoring the node for state changes. This can be
implemented using web3 (or a variant) to monitor all
blocks being finalized or a lower level client can be
built that monitors the leveldb store directly.

- Relay: A relay service is an off-chain service that may
be leveraged by nodes to transact with the main-net
(and reduce gas costs). The relay also has access to a
funded account for transactions on the main-net.

- Notary: A notary service is an optional off-chain
service that periodically checks the main-net for
state agreement between all nodes within an
environment ((including the monitor node) and
raises a red flag if a disagreement exists. The notary
service also has a funded account for transactions on
the main-net.

- Sentry: A sentry service is an off-chain real-time
analytics engine that continuously monitors the
network (and the monitor node). Based on a pre-
defined policy, the sentry can take an immediate
action on a permissioned network a.k.a Environment
when collusion is detected.

- Arbitrator: The arbitrator is a set of smart-contracts
on the main-net that together accumulate state of all
nodes within a permissioned network and allow
retrieval of previously reported states for any given
environment and node within an environment. The
Arbitrator smart contract provides a notarized proof
of state agreement between all nodes in a
permissioned network (including the monitor node).

2.3 Architectural Overview
The diagram in Figure 1 depicts all components in a
sample tethering implementation.

2.4 Details of Tethering a Network
2.4.1 Deploy Arbitrator on Main-net
An arbitrator smart-contract is deployed to the main-
net so permissioned networks can tether with it. This
can happen any time before the first permissioned
network that requires tethering is brought online.

2.4.2 Register Permissioned Network
When a tethered permissioned network is initially
launched, every node on the network is configured
with a private/public key pair that is used by the node
to digitally sign any outgoing messages. An additional
monitor node is also configured to run within the
network in a read-only capacity (as an observer only).
When the network is initially provisioned, a hash of a
JSON object that represents the policies that govern
the network is stored by the Arbitrator along with a
hash of the genesis block. The policy itself is stored off-
chain (and may contain any number of rules including
but not limited to rules governing how often the state

must be sync’ed with the main-net, policies around
additional nodes joining or leaving the network etc.).

When each node on the permissioned network comes
online, the node registers itself with the Arbitrator as a
valid node on the network by sending a message to the
contract that is digitally signed by the node’s
public/private key pair. After successful registration,
each node has access to and can retrieve the policy
hash from the arbitrator and validate the hash of the
genesis block against its own genesis block.

This protects the genesis block from being rewritten or
changed (for some consensus algorithms, the initial list
of validators may be encoded in the genesis block).

For privacy of the network and nodes, all IDs registered
with the main-net are KECCAK-256 hashes of the ID.

2.4.3 Synchronize state with the main-net
periodically

Each node on the permissioned network (including the
monitor node) must collocate a Main-net Tether
Service with the chain client that is processing
transactions. The Main-net Tether Service

continuously monitors any blocks being generated and
maintains an internal Patricia Merkle Tree that stores
the key-value pairs of block numbers and block hashes.
Every single block finalized by the chain client is
immediately (with some configurable delay) added to
the Patricia Merkle Tree. This service will periodically,
based on the block interval defined in the network
policy:

a. Retrieve the root hash of the Patricia Merkle
Tree

b. Create a payload with the root hash, KECCAK-
256 hash of its own unique identifier, and a
KECCAK-256 hash of the unique identifier for
the environment

c. Digitally sign the payload and send it to the
main-net.

Note that this is not using a time-based interval as a
timer-based sync can’t guarantee block height
agreement. Instead, the interval is defined in blocks
(eg: every 100th block or every 10th block).

The root hashes can be sent to the main-net using one
of two methods. Each Main-net Tether service can

Figure 1: Data flow diagram in a tethered permissioned network

directly invoke the Arbitrator method to store the state
at a periodic interval (Distributed Sync) or simply send
its root and signature to the relay queue (Relay-based
Sync). In a Distributed Sync, the cost of transacting on
the main-net increases linearly with each node and the
number of transactions are determined by the block
growth rate (i.e. if blocks grow at an exponential rate,
the transactions can also grow at an exponential rate)
depending on the policy. A policy can be built to be
more dynamic based on rate of growth. To avoid the
high-cost of transaction a Relay-based sync can be
utilized. In a relay-based sync, the Main-net Tether
service will send the root hash at the block interval
defined by the environment policy to an internal relay
(via a reliable transport mechanism that provides at-
least-once delivery guarantees). The Relay service can
accumulate reports for a period of time and send a
single report to the main-net for the most recent block
number with reports from all the nodes in the network.
If there are block numbers that do not have reports
from every single node in a network, the Relay will hold
those reports in persistent storage for a period of time
called the report expiration period. The report
expiration period is defined by the environment policy.
The Relay will clear its storage and send all reports

available to it if the report expiration period passes and
the latest block reported still has some nodes that have
not reported their state.

The Main-net Tether service provides a RESTful service
endpoint to generate proof for any given key-value pair
in the Merkle Patricia Tree it maintains. When invoked,
it validates the block hash against the block in the chain
and its copy of the Patricia Tree and returns the
generated proof which can be used to verify against a
root hash. It also provides an endpoint to verify a given
proof against its own Patricia Merkle Tree hash root.

Additionally, to ensure that the Main-net Tethering
Service itself is not tampered with, it must be
protected from all access except through recognized
endpoints. The container that runs it must follow best
practices for security that are beyond the scope of this
document. Ultimately, there needs to be clear
guarantees that no one party can access this code or
modify it (including the administrators and the
development teams that develop this code).

2.4.4 Checking state agreement between nodes
Each network is configured with one or more Notary
services that periodically retrieves the state of network
from the main-net and checks to see if all nodes are in

Figure 2: Main-net Tethering Service in a Distributed Sync setup

agreement. The interval and schedule that the Notary
service utilizes for a network is determined by the
policy of the network. If there is a disagreement
detected i.e. not all nodes reported the same hash
root, the Notary service sends an announcement using
a reliable at-least-once delivery mechanism to all
subscribers for such an announcement. This allows all
interested parties to listen to such announcements to
take an appropriate action. Such an announcement is
digitally signed by the notary and can be validated to
have originated with the notary.

Each member of a consortium may deploy their own
subscribers to listen for such announcements and take
action against their own node or an auditor can deploy
a subscriber to listen for an announcement from the
Notary.

The Notary service can also be implemented by any
party interested in providing permissioned network
guarantees by directly communicating with the smart
contract.

An important note for the notary is that the notary is
not aware of the actual unique IDs and only works off
of the hashes (i.e. it is initialized with an environment
ID hash, node ID hashes, and the interval derived from
the environment policy).

The Notary service also exposes a set of APIs for
validating that a particular block number and hash
were in fact at one time part of the blockchain. The
service requires the environment ID hash, the node ID
hash, and a proof. It returns true if the proof is valid
based on the main-net root hash or it returns false
along with the root hash that was used to verify the
proof. This service utilizes the main-net report for the
environment (that was agreed on by all nodes) for the
nearest block number greater than the block number
being verified. Using the root hash stored in the report,
it will verify that the proof being presented for the
block number/hash being presented can be verified
using the root hash stored in the main-net. If a
disagreement exists for the nearest block, the Notary
will verify the proof against all hashes and provides the
result back to the caller.

Finally, the Notary service announces any approved
changes to the network (addition or removal of nodes).
See Addition or Removal of Nodes from the Network
(2.4.6) for additional details.

In practical details, the Notary services invokes a
method on the Arbitrator contract called
getChainStatus. This method on the contract will
return true if all nodes in an environment (identified by
the parameters) agree on a state. The Notary service is
simply providing a push based subscription instead of
a pull implementation (which can be accomplished by
directly invoking getChainStatus periodically).

2.4.5 Policy enforcement when state
disagreement is detected

The Sentry is responsible for network policy processing
and enforcement and will utilize the defined network
policy to call the necessary services to take a specific
action on the network (eg: pause the whole
environment, notify administrators etc.). The Sentry
registers itself as a subscriber to the Notary
announcement and has an analytics engine that
receives chain-level protocol events from the monitor
node at a regular interval (eg: block rejections, peer
communication failure etc.). It also has access to the
hashes of all environments and nodes, so it can
correlate the announcement to a specific network and
take action on the network based on the policy. The
sentry is capable of taking immediate action when the
analytics engine reports possible problems with the
chain (including collusion or compromised nodes). Any
such actions can be further validated by the irrefutable
proof of state saved on the main-net. Additionally, all
actions taken by the Sentry are also recorded on the
main-net to ensure there is an audit trail of the Sentry
activity.

Off-chain agencies may also leverage the Notary
announcements to restrict participation of the
network or enforce off-chain penalties. In fact, the
sentry may simply alert an off-chain entity for further
investigation/inquiry. All such actions are a possibility
with the design presented in this paper.

2.4.6 Addition or Removal of Nodes from the
Network

When a permissioned member needs to be added or
removed from the network, each node in the network
sends a signed proposal to the arbitrator with the
public key of the new node that is joining or leaving the

network. The Notary service monitors for any
approved additions or removals and announces these
changes to everyone through a separate topic on the
pub/sub transport that provides exactly-once-
semantics. The Sentry service will listen for approved
changes as well and reconfigures the network
accordingly.

3 Conclusion
This paper presents a novel method of creating provenance for private permissioned network state by tethering
them to the main-net. In the future, we hope to improve this method further by introducing efficiencies and
remote attestation for components that currently have to run in a trusted manner (for eg: main-net tethering
service). Additional future work may revolve around creating a modified client purpose built for permissioned
networks that provides the benefits of the permissioned networks and simultaneously tethers the provenance for
a permissioned network with the Ethereum main-net for enhanced immutability.

