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Abstract 

Permissioned private chains are susceptible to attacks where legitimate parties on the permissioned 
network collude to create an alternate chain by rewriting the chain from some point-in-time in the past; 
thereby, weakening the immutability guarantees of a blockchain network. This paper discusses such an 
attack vector and proposes a way to tether the provenance for permissioned and private chain state 
transitions to a public blockchain network (which has better guarantees around immutability). This is 
accomplished by tethering a private chain to a smart contract on the Ethereum main-net that records an 
irrefutable commitment of the current chain state. An external service is thus, enabled to provide 
guarantees on the private chain state (with an appropriate proof) and allow the detection of a 
compromised private chain due to collusion-based history rewrite by legitimate permissioned parties. 
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1 Background 
Enterprise organizations are looking to exploit 
blockchain based distributed data storage and 
compute frameworks to realize the benefits of 
cooperation with potentially adversarial parties for 
efficient execution of inter-party transactions relying 
on the guarantees provided by a distributed ledger. For 
several reasons (including but not limited to 
transactional privacy, trade secrets, and performance), 
most enterprises seek to utilize their own private 
permissioned network (aka consortium chains) for a 
distributed ledger. These networks do not employ 
proof-of-work for consensus and generally should not 
employ PoW because a PoW network is only as secure 
as the computing capacity behind it. Instead, variants 
of BFT algorithms or crash-tolerant algorithms are 
employed for consensus (depending on the use-case of 
a particular deployment). These consensus algorithms 
lead to significant benefits for permissioned chains as 
transactions can settle with significantly lower latency. 
As reasoned above, proof-of-work would not provide 
the requisite security for these networks. 
 
Although, a permissioned network that has an access 
control layer backed in as a first-class citizen is not 
susceptible to the same attack vector as an un-
permissioned network, it is susceptible to a different 
subset of attack vectors: adversaries getting access to 
such a network by compromising the access control 
layer or collusion of sufficiently large number of 
legitimate permissioned parties within the network. In 
the later scenario, the immutability of the chain can no 
longer guaranteed even with immediate finality of the 
blocks. The type of collusion scenario is often times 
handled by legal entities that reside off-the-chain but 
there is still not an easy way to arbitrate and prove the 
state of the chain at a given point-in-time in all parties 
on the chain collude. The concepts introduced in this 
paper allow any interested party to reliably detect, 
verify, and potentially recover from collusion between 
trusted parties on a permissioned network. 
 
1.1 Consensus Algorithms  
 
Permissioned networks tend to employ a variety of 
consensus algorithms that can be broadly classified as 

either byzantine fault tolerant or crash fault tolerant. 
All such algorithms provide instant finality of the 
blocks. While a comprehensive discussion around 
these algorithms is beyond the scope of this paper, it is 
worth it to note that the attack vectors described in 
here do not cover the full gamut of these algorithms 
and only discuss a subset of these algorithms (RAFT, 
IBFT, and PoA implementations like Clique, and Aura). 
Nonetheless, the concepts discussed can be employed 
for any class of algorithms that fit into these categories 
and have similar susceptibilities.  
 
1.2 Attack Vectors 
Before we discuss the proposed Tethering concept, it 
is prudent to briefly discuss the attack vectors on a 
permissioned network. These can generally be 
categorized into two areas: gaining access to the 
network by circumventing or breaking through the 
access controls, or sufficient number of legitimate 
permissioned parties colluding to create an alternate 
version of truth on the network. While we briefly 
discuss the first category of attacks, this paper is 
primarily focused on the second category namely the 
issue of history rewrite by sufficiently large number of 
colluding parties in a permissioned network.  
 
1.2.1 Compromised Access Layer 
The attack vector of a compromised node is generally 
addressed by ensuring proper access control and 
following best practices in security. It is, however, 
worth it to briefly discuss this attack vector and its 
implications. In general, we need to discuss the ability 
of an attacker to rewrite history and propose new 
rogue/invalid blocks to the network.  
 
1.2.1.1 Using RAFT 
In a permissioned network using the RAFT consensus, 
this attack can be successful if a rogue party gains 
access to the network and is elected leader for the 
RAFT consensus. In such a scenario, rogue new blocks 
can be proposed that the network will consider the 
truth. RAFT consensus is susceptible to this attack 
vector because RAFT followers are required to blindly 
trust the leader’s proposal. There is little that can be 
done to prevent such an attack after a rogue party 
gains access to a node on the network. Additionally, 
any rogue node could rewrite its own chain without 



proposing it to the rest of the network (leaving the 
party that relies on the particular node susceptible to 
invalid history). The first scenario of a rogue leader 
proposing compromised blocks to the network can’t be 
protected against given that RAFT is simply a crash 
tolerant algorithm. However, the second scenario of a 
local rewrite of history could be detected and 
recovered from using the proposal in this paper. 
 
1.2.1.2 Using BFT variants 
In a permissioned network using the PBFT consensus, 
or one of its many variants such as IBFT, this attack is 
limited to a local rewrite of history. The PBFT 
consensus algorithm is designed to tolerate invalid 
block proposals by the rogue party because the honest 
validators will reject the block. However, new rogue 
blocks can be proposed and accepted if a rogue party 
controls the super-majority of the validators and the 
proposer of the blocks (which would mean that the 
network is severely compromised). This proposal does 
not address this scenario. 
 
1.2.2 Collusion between Permissioned Parties 
Our main focus is the detection of a history rewrite by 
a sufficient number of colluding parties on the network 
and to reliably reinforce immutability of permissioned 
chains. To that extent, let us briefly look at what 
collusion may look like on a permissioned network. 
Again, we will look at proposing of new blocks on the 
network and rewrite of the history. 
 
1.2.2.1 Using RAFT 
In a permissioned network that utilizes RAFT 
consensus, any party can collude with the leader of the 
network and introduce new blocks in the network that 
are invalid. The blocks are simply accepted by all 
parties when proposed. Such collusion can’t be 
prevented, and RAFT consensus is not recommended 
for permissioned networks that are concerned about 
adversarial parties on the network. This attack is 
equivalent in its effect to a rogue party gaining control 
of the leader node by breaking through the access 
control layer.  
 
Multiple parties may also collude and rebuild the chain 
(rewrite history). As the block finality is instant, the 
rewrite of the history will be limited to the parties 

involved and will not propagate on the network. When 
new blocks are proposed with the new chain, they will 
be rejected by the other nodes in the network because 
the chain is not valid. At this point, there is no way to 
tell who was ‘honest’ as the colluding parties can easily 
suggest that the ‘honest’ party is in fact ‘rogue’. This 
proposal in this paper sufficiently addresses this later 
scenario. 
 
1.2.2.2 Using BFT variants 
In a permissioned network that utilizes a BFT variant 
consensus, multiple parties may collude and rewrite 
their own history and start proposing and validating 
new blocks based on the new rewritten chain. This 
requires collusion between a super majority of 
validators (and in a network where every node is a 
validator, this requires the super majority participation 
of the network). However, as is true with RAFT, since 
the block finality is instant, the rewritten chain will not 
propagate on the network and will continue to be 
rejected by the honest nodes. A history rewrite is not 
simple in this case as in the RAFT consensus which does 
not have the signature of proposer on the block (as it 
exists today) and identifying the honest party is 
problematic. The BFT variants generally have some 
sort of a signatory mechanism that is stored on the 
block, so collusion between parties would be 
sufficiently difficult and unless all parties in the 
consortium collude on the new chain, the honest 
parties can easily be identified since every block has 
the signature of the original validator(s). In theory, this 
minimizes the surface area of this attack vector but 
there is still no recourse if the whole consortium 
colludes to rewrite some part of the history. The 
proposal in this paper enables an external party to 
validate that no history rewrite has occurred on the 
network. External parties include, at minimum, 
distributed applications that interact with the 
consortium network, auditors who need to verify the 
veracity of the network, or proxy nodes that interact 
with the network using a node provided by a 
permissioned party on the network.  



2 State Provenance through Main-
net Tethering 

2.1 Introduction  
This paper proposes a method to maintain an 
irrefutable proof of the state of a permissioned 
network using a combination of a monitor node and a 
smart contract on the Ethereum main-net. The state of 
a permissioned network is defined as the full-chain of 
finalized blocks on the permissioned network at any 
given point in time. The main-net is significantly more 
hardened against tampering and can be leveraged as 
the source of truth when there is disagreement 
between parties in a permissioned network. Using this 
record on the main-net, any interested service or party 
can provide proof of network compromise based on 
state deviations.   
 
2.2 Definitions 
This paper employs several terms that are defined 
here for ease of consumption. 

- Environment: An environment is a permissioned 
network which has one or more nodes.  

- Network: Equivalent to an environment and is used 
synonymously in this paper.  

- Node: A node within a permissioned network is 
owned by a specific party in the permissioned 
network and has a unique identity. Each node also 
has a public/private key pair that is maintained 
securely to sign all messages that originate from the 
node.  

- Monitor Node: A read-only node within a 
permissioned network run by the auditor (or a 
platform provider) in a security hardened container 
with no external access and audited maintenance 
access. 

- Main-net Tether Service: This service is collocated 
with a chain client in the node and is continuously 
monitoring the node for state changes. This can be 
implemented using web3 (or a variant) to monitor all 
blocks being finalized or a lower level client can be 
built that monitors the leveldb store directly.  

- Relay: A relay service is an off-chain service that may 
be leveraged by nodes to transact with the main-net 
(and reduce gas costs). The relay also has access to a 
funded account for transactions on the main-net. 

- Notary: A notary service is an optional off-chain 
service that periodically checks the main-net for 
state agreement between all nodes within an 
environment ((including the monitor node) and 
raises a red flag if a disagreement exists. The notary 
service also has a funded account for transactions on 
the main-net. 

- Sentry: A sentry service is an off-chain real-time 
analytics engine that continuously monitors the 
network (and the monitor node). Based on a pre-
defined policy, the sentry can take an immediate 
action on a permissioned network a.k.a Environment 
when collusion is detected. 

- Arbitrator: The arbitrator is a set of smart-contracts 
on the main-net that together accumulate state of all 
nodes within a permissioned network and allow 
retrieval of previously reported states for any given 
environment and node within an environment. The 
Arbitrator smart contract provides a notarized proof 
of state agreement between all nodes  in a 
permissioned network (including the monitor node). 
 

2.3 Architectural Overview  
The diagram in Figure 1 depicts all components in a 
sample tethering implementation.  

2.4 Details of Tethering a Network 
2.4.1 Deploy Arbitrator on Main-net 
An arbitrator smart-contract is deployed to the main-
net so permissioned networks can tether with it. This 
can happen any time before the first permissioned 
network that requires tethering is brought online.  

2.4.2 Register Permissioned Network 
When a tethered permissioned network is initially 
launched, every node on the network is configured 
with a private/public key pair that is used by the node 
to digitally sign any outgoing messages. An additional 
monitor node is also configured to run within the 
network in a read-only capacity (as an observer only). 
When the network is initially provisioned, a hash of a 
JSON object that represents the policies that govern 
the network is stored by the Arbitrator along with a 
hash of the genesis block. The policy itself is stored off-
chain (and may contain any number of rules including 
but not limited to rules governing how often the state 



must be sync’ed with the main-net, policies around 
additional nodes joining or leaving the network etc.). 

When each node on the permissioned network comes 
online, the node registers itself with the Arbitrator as a 
valid node on the network by sending a message to the 
contract that is digitally signed by the node’s 
public/private key pair. After successful registration, 
each node has access to and can retrieve the policy 
hash from the arbitrator and validate the hash of the 
genesis block against its own genesis block.  

This protects the genesis block from being rewritten or 
changed (for some consensus algorithms, the initial list 
of validators may be encoded in the genesis block). 

For privacy of the network and nodes, all IDs registered 
with the main-net are KECCAK-256 hashes of the ID.  

2.4.3 Synchronize state with the main-net 
periodically 

Each node on the permissioned network (including the 
monitor node) must collocate a Main-net Tether 
Service with the chain client that is processing 
transactions. The Main-net Tether Service 

continuously monitors any blocks being generated and 
maintains an internal Patricia Merkle Tree that stores 
the key-value pairs of block numbers and block hashes. 
Every single block finalized by the chain client is 
immediately (with some configurable delay) added to 
the Patricia Merkle Tree. This service will periodically, 
based on the block interval defined in the network 
policy:  

a. Retrieve the root hash of the Patricia Merkle 
Tree 

b. Create a payload with the root hash, KECCAK-
256 hash of its own unique identifier, and a 
KECCAK-256 hash of the unique identifier for 
the environment 

c. Digitally sign the payload and send it to the 
main-net.  

Note that this is not using a time-based interval as a 
timer-based sync can’t guarantee block height 
agreement. Instead, the interval is defined in blocks 
(eg: every 100th block or every 10th block).  

The root hashes can be sent to the main-net using one 
of two methods. Each Main-net Tether service can 

Figure 1: Data flow diagram in a tethered permissioned network 



directly invoke the Arbitrator method to store the state 
at a periodic interval (Distributed Sync) or simply send 
its root and signature to the relay queue (Relay-based 
Sync). In a Distributed Sync, the cost of transacting on 
the main-net increases linearly with each node and the 
number of transactions are determined by the block 
growth rate (i.e. if blocks grow at an exponential rate, 
the transactions can also grow at an exponential rate) 
depending on the policy. A policy can be built to be 
more dynamic based on rate of growth. To avoid the 
high-cost of transaction a Relay-based sync can be 
utilized. In a relay-based sync, the Main-net Tether 
service will send the root hash at the block interval 
defined by the environment policy to an internal relay 
(via a reliable transport mechanism that provides at-
least-once delivery guarantees). The Relay service can 
accumulate reports for a period of time and send a 
single report to the main-net for the most recent block 
number with reports from all the nodes in the network. 
If there are block numbers that do not have reports 
from every single node in a network, the Relay will hold 
those reports in persistent storage for a period of time 
called the report expiration period. The report 
expiration period is defined by the environment policy. 
The Relay will clear its storage and send all reports 

available to it if the report expiration period passes and 
the latest block reported still has some nodes that have 
not reported their state.  

The Main-net Tether service provides a RESTful service 
endpoint to generate proof for any given key-value pair 
in the Merkle Patricia Tree it maintains. When invoked, 
it validates the block hash against the block in the chain 
and its copy of the Patricia Tree and returns the 
generated proof which can be used to verify against a 
root hash. It also provides an endpoint to verify a given 
proof against its own Patricia Merkle Tree hash root.  

Additionally, to ensure that the Main-net Tethering 
Service itself is not tampered with, it must be 
protected from all access except through recognized 
endpoints. The container that runs it must follow best 
practices for security that are beyond the scope of this 
document. Ultimately, there needs to be clear 
guarantees that no one party can access this code or 
modify it (including the administrators and the 
development teams that develop this code).  

2.4.4 Checking state agreement between nodes 
Each network is configured with one or more Notary 
services that periodically retrieves the state of network 
from the main-net and checks to see if all nodes are in 

Figure 2: Main-net Tethering Service in a Distributed Sync setup 



agreement. The interval and schedule that the Notary 
service utilizes for a network is determined by the 
policy of the network. If there is a disagreement 
detected i.e. not all nodes reported the same hash 
root, the Notary service sends an announcement using 
a reliable at-least-once delivery mechanism to all 
subscribers for such an announcement. This allows all 
interested parties to listen to such announcements to 
take an appropriate action. Such an announcement is 
digitally signed by the notary and can be validated to 
have originated with the notary. 

Each member of a consortium may deploy their own 
subscribers to listen for such announcements and take 
action against their own node or an auditor can deploy 
a subscriber to listen for an announcement from the 
Notary. 

The Notary service can also be implemented by any 
party interested in providing permissioned network 
guarantees by directly communicating with the smart 
contract.  

An important note for the notary is that the notary is 
not aware of the actual unique IDs and only works off 
of the hashes (i.e. it is initialized with an environment 
ID hash, node ID hashes, and the interval derived from 
the environment policy).  

The Notary service also exposes a set of APIs for 
validating that a particular block number and hash 
were in fact at one time part of the blockchain. The 
service requires the environment ID hash, the node ID 
hash, and a proof. It returns true if the proof is valid 
based on the main-net root hash or it returns false 
along with the root hash that was used to verify the 
proof. This service utilizes the main-net report for the 
environment (that was agreed on by all nodes) for the 
nearest block number greater than the block number 
being verified. Using the root hash stored in the report, 
it will verify that the proof being presented for the 
block number/hash being presented can be verified 
using the root hash stored in the main-net. If a 
disagreement exists for the nearest block, the Notary 
will verify the proof against all hashes and provides the 
result back to the caller.  

Finally, the Notary service announces any approved 
changes to the network (addition or removal of nodes). 
See Addition or Removal of Nodes from the Network 
(2.4.6) for additional details. 

In practical details, the Notary services invokes a 
method on the Arbitrator contract called 
getChainStatus. This method on the contract will 
return true if all nodes in an environment (identified by 
the parameters) agree on a state. The Notary service is 
simply providing a  push based subscription instead of 
a pull implementation (which can be accomplished by 
directly invoking getChainStatus periodically). 

2.4.5 Policy enforcement when state 
disagreement is detected 

The Sentry is responsible for network policy processing 
and enforcement and will utilize the defined network 
policy to call the necessary services to take a specific 
action on the network (eg: pause the whole 
environment, notify administrators etc.). The Sentry 
registers itself as a subscriber to the Notary 
announcement and has an analytics engine that 
receives chain-level protocol events from the monitor 
node at a regular interval (eg: block rejections, peer 
communication failure etc.). It also has access to the 
hashes of all environments and nodes, so it can 
correlate the announcement to a specific network and 
take action on the network based on the policy. The 
sentry is capable of taking immediate action when the 
analytics engine reports possible problems with the 
chain (including collusion or compromised nodes). Any 
such actions can be further validated by the irrefutable 
proof of state saved on the main-net. Additionally, all 
actions taken by the Sentry are also recorded on the 
main-net to ensure there is an audit trail of the Sentry 
activity. 

Off-chain agencies may also leverage the Notary 
announcements to restrict participation of the 
network or enforce off-chain penalties. In fact, the 
sentry may simply alert an off-chain entity for further 
investigation/inquiry. All such actions are a possibility 
with the design presented in this paper.  



2.4.6 Addition or Removal of Nodes from the 
Network 

When a permissioned member needs to be added or 
removed from the network, each node in the network 
sends a signed proposal to the arbitrator with the 
public key of the new node that is joining or leaving the 

network. The Notary service monitors for any 
approved additions or removals and announces these 
changes to everyone through a separate topic on the 
pub/sub transport that provides exactly-once-
semantics. The Sentry service will listen for approved 
changes as well and reconfigures the network 
accordingly.  

 

3 Conclusion 
This paper presents a novel method of creating provenance for private permissioned network state by tethering 
them to the main-net. In the future, we hope to improve this method further by introducing efficiencies and 
remote attestation for components that currently have to run in a trusted manner (for eg: main-net tethering 
service). Additional future work may revolve around creating a modified client purpose built for permissioned 
networks that provides the benefits of the permissioned networks and simultaneously tethers the provenance for 
a permissioned network with the Ethereum main-net for enhanced immutability. 

 
 

 

  


